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Inclusion of short-range order in a mean field theory for the 
disordered magnetic lattice gas 

T nucher and N E Frankel 
School Of Physics, Univenity of Melbourne, Parkville, Victoria 3 5 2 ,  Australia 

Received 10 June 1991 

AbslncL The disordered magnetic lattice gas (DMLG) as a unifylng description of many 
simpler random spin systems has been investigated in an attempt U) devise a mean field 
theory which goes beyond the infinitely-longranged model by incorporating shon-range 
order (SRO). We have shown rigorously that the loa1 thermodynamic properties of the 
DMLG on a Cayley wee of finite coordination number I are identical to the thermodynamic 
properties of the D M U ~  in a pair approximation obtained by using the method of the 
distribution function. Furlher, a modified pair approximation for the DMLG is presented 
which Is exactly solvable. It is formulated for general random bond distribution functions, 
and Is then examined for the special case of Gaussian distributions. 

1. Introduction 

Mean field theory, which approximates the behaviour of a system by ignoring the 
effects of fluctuations, usually provides a good starting point for studying phase tran- 
sitions in non-random Ising spin systems. Developing useful mean field theories for 
random spin systems, however, has still remained something of a challenge since the 
seminal work by Sherrington and Kirkpatrick (SK) [l] who treated their model by 
means of the n-replica method. Although the n-replica method gives exact results at 
high temperatures [Z], it breaks down at low temperatures where it yields a negative 
entropy. It is nowadays believed that at low temperatures the SK model has a rich 
ultrametric structure of 'Gibbs states' described by F'arisi's replica symmetry breaking 
solution [3,4]. Among the various alternative approaches to the SK problem we just 
mention the TAP equations [5]. 

Scepticism won arose about the relevance of a mean field theory based upon an 

appeared in the literature to develop a mean field theory which incorporates some 
kind of short-range ordering (SRO), i.e. one which takes into account not only the 
average spin on each site, but also the fluctuations from this average. 

A first natural approach was to consider a generalization of the Bethe-Peierls- 
Weiss (BPW) approximation to random spin systems, or equivalently, to treat the 
system on a Cayley tree of finite coordination number z. Since the number of sites on 
the surface of the Cayley tree is of the same order of magnitude as the total number 
of sites, surface effects cannot be neglected in the thermodynamic limit. Therefore, 
as in the non-random case, the BPW approximation and the system on a Cayley tree 
are only equivalent if one considers suitably defined 'local' thermodynamic quantities 
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rather than the corresponding global or bulk expressions [6-8]. Unfortunately, in the 
case of random spin systems, the resulting equations for the effective fields constitute 
an intractable set of coupled integral equations which can only be solved in the limit 
of infinite coordination number z -+ 03 (which simply recovers zeroth-order mean 
field theory) [6, % l l ]  or at T = 0 [12,13]. 

The technique of the distribution function constitutes an alternative approach to 
the problem of developing a mean field theory for random spin systems which incor- 
porates SRO. Although different authors adopted it initially, this approach was mainly 
pursued by groups in lbhoku and later Melbourne. In [14] a comprehensive review 
of this method in studies of disordered systems up to 1981 is given. After having 
introduced the disordered magnetic lattice gas (DMLG) as a unifying description of 
many simpler models for amorphous solids and real fluids, Inawashiro, Frankel and 
Thompson (IFT) [14,15] studied this system using a generalized Kikuchi pair approx- 
imation [16]. Later, Bell, Frankel and Inawashiro [17] extended this investigation to 
a general model of a random binary alloy. All these authors formulate the problem 
self-consistently for finite coordination number z and derive a set of mupled integral 
equations for the distribution function of the effective fields and potentials which are 
analytically rather intractable. They continue their derivation of the order parameters 
in the limit z - 03. Thompson, Inawashiro and Frankel (TIF) [ll] have shown that in 
the limit t -+ m the pair approximation for the DMLG is equivalent to the DMLG on 
a Cayley uee of infinite coordination number if one considers 'local' thermodynamic 
quantities. I F r  have further shown that in the limit z - m the pair approximation 
reproduces exactly the SK equations upon a corresponding specialization of the DMLG 
with Gaussian random bonds. 

In this paper we show that the pair approximation for the DMLG, and thus for a 
whole range of models to which it reduces upon specialization [14,15], is equivalent 
to the DMLG on a Cayley tree with 'local' interpretation, for arbitraly coordination 
number z, ie. in particular for finite z.  This is done in section 3. In section 4, we 
then present a modified pair approximation in which the pair cluster is not embedded 
in self-consistent effective fields and potentials but in which the general shape of the 
distribution function for these effective fields and potentials is determined by zeroth- 
order mean field theory (the infinite-range model), while the specifying parameters 

modified pair approximation is that it can be solved analytically. We formulate the 
method for general random bond/potential distributions and examine the special case 
of Gaussian distributions. In section 2, which is orientational, we define our model, 
introduce our notations and briefly summarize the relevant equations from the I F r  
pair approximation [14,15]. Section 5 is devoted to a summary and discussion, 

T Taucher and N E  Frankel 

of iGs fiki&UiiOji fuiisiion Bfe deiermined seif-somisieniiy, y"e of 

2. Model and the pair approximation 

The model Hamiltonian for the DMLG is 

where J , j  denotes the magnetic interaction between lattice sites i and j ,  U;, is the 
potential interaction between lattice sites i and j ,  E is an external magnetic field and 
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p is the chemical potential. Spin-1 king operators are used to represent a particle 
with up or down spin at a lattice site by S = 1 or S = -1, respectively, and a 
vacant site by S = 0. It is assumed that J . .  and U i j  are distributed randomly over 
the lattice bonds with a probability distribiion P(  J, U). ( i , j )  runs over all nearest 
neighbour lattice sites. 

The single-site Hamiltonian is introduced as 

$2j ^, f d z )  , \ -7 

where h p )  ((PI) represents an effective field (potential) at the site 1 coming from z 
neighbours through each interaction bond (see figure 1). 

Figure 1. Spin SI with the r-bond field and 1- 

bond potential which are denoted by a dashed and 
by a wavy line, respenively. 

Flgum 2. Pair of spins St and S, and the come- 
sponding sets of ( z  - l)-bond fields and potentials. 

The pair-site Hamiltonian is introduced as 

1 - - 1 1  ,.-,, 
where h:"' ( l > * - - ' )  denotes an effective field (potentiai) at the ith site resuiting 
from the ( z  - 1) neighbours outside the pair sites (see figure 2). 

This allows us to define a single-site density matrix 

p1 = e x p  (-P'%) (2.4) 

and a pair-site density matrix as 

pl? = exp (--b"HI2) 
Evaluating the traces gives 

Trp, = Z ,  (h iZ1 , l$ ' ) )  



(2.9) 

For a general m-bond field hi"') and m-bond potential l!"') at site i, resulting from 
m neighbours 1 , .  . . , m, we now make the following assumption 

m m 

hi"') = E h i k  lim) = E l i k  (2.12) 
k = l  k = l  

where hi, ( l i t )  represents the effective field (potential) at site i from the kth neigh- 
bour through the interaction bond. The hik's ( l ik's)  are called single-bond fields 
(potentials). See figure 3. 

Figure 3. (a) Spin SI. the single-band field and polential hi and 1 1 ,  and the ( z  - 1)- 
band field and potential. (b)  Spin SI and al l  the single bond fields and potentials. Both 
figures are equivalenl under the assumption (2.12) if h ,  z h, , .  1 ,  E I t , .  

The distribution function for the m-bond field h and nx-bond potential 1 at the 
Same site is denoted by g ( " ) ( h , l ) ,  and the corresponding single-bond distribution 
function by g( h,  I). 

( ) 1 2  denotes the thermal average with respect to p l z ,  ( denotes the thermal 
average with respect to pl. and ( ) R  denotes the random average. 

Neglecting any corr.e!atinns oueide the pailr-c!uteri in the same spirit as our 
assumption (2.12). then gives 

d m ) ( h , l )  = 1 6  ( h  - 5 .i) 6 ( 1  - l i )  f i g ( h i ,  4 )  d h ,  d l , .  
m 

(2.13) 
i=1  
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Furthermore, we introduce the consistency requirement Tr2P12 a pl .  This essen- 
tially means that a single-site expectation value in the pair approximation equals the 
same expectation value in the single-site approximation 

( ( 3 Y S I ) ) l , ) R  = ( ( F ( S I ) ) l ) R  (2 14) 

where F k an arbitraty function of SI. 
Using this consistency requirement and (2.13), IFI obtain 

and finally derive a set of coupled integral equations for the ( z  - 1)-bond distribution 
function 

g(z-l)(h,l) = - /exp[-i(ph + sl)]. [ G ( p ,  h)]'-' d p d s  (2.16) 
(27r)* 

~ ( p , s )  = J e x p [ i p H ( h , l , J , U )  + i s ~ h , l , ~ , ~ ) l  

x P ( J , U ) d J d U g ( ' - ' ) ( h , I ) d h d l .  (2.17) 

The free energy per bond in the pair approximation is then obtained using sta- 
tionarity arguments with respect to variations in the single-bond distribution function 
nl h I >  3~ 
Y!'" ,* /  - 

V = V 1 z - 2 ( +  2 - 1  (2.18) 

where 

(2.19) 

The order parameters which classify the DMLG are given by 
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For a more detailed expose of the pair approximation, see IFT [14, U]. 
In the limit of p - 00 all lattice sites are occupied and the DMLG reduces to 

a standard disordered spin-f system. In this case, and for a Gaussian distribution 
P( J ,  U), equations (2.21) and (2.22) become exactly the SK equations. In the case 
of no magnetic interaction, Ji ,  + 0, the DMLG reduces to the DLG as a simple 
generalization of the Lee and Yang lattice gas. In the case of no potential interaction, 
Ui j  -+ 0,  our model becomes what IFT call the simple disordered magnetic gas 
(SDMG). It is interesting to note that in this case and for a Gaussian distribution 
P ( J ,  U )  the average effective potential ( 1 )  does not necessarily vanish. 

3. Equivalence of Cayley tree and pair approximation 

Thompson, Inawashiro and Frankel (TIF) 1111 have investigated the DMLG on a Cayley 
tree. They found that in the limit of infinite coordination number (z -+ M) the pair 
approximation corresponds to the DMLG on a Cayley tree if one considers local 
thermodynamic quantities ‘deep inside the Cayley tree’ rather than the corresponding 
global or bulk expressions. In this section we show that this equivalence c a ~  be 
established for arbitrary finite z. 

The relation between the pair approximation and the Bethe lattice for the random 
bond Ising model has been discussed by Morita [NI. We make this discussion rigorous 
and extend it to the case of the DMLG. ?b this purpose, we first have to provide a 
precise definition of I !os! th.e.~.odyn’mic cpantiity of a system 08 5 G?y!ey tree. 

As one proceeds from the outermost shell towarCs the centre of a Cayley tree, 
the thermodynamic action of the ‘twigs’ or ‘branches’ can be entirely replaced by 
effective fields and potentials acting on the site from where the branches emerge. In 
this manner, an iteration scheme for the effective fields and potentials can be derived, 
given by (see TIF [ll]) 

1-1 

hi,  ... i 7  =  hi ~ . . . ~ ,  i ~ + , , l i ,  ... i ~ i ~ + ~ , J i ~ . , . i , i ~ + , ,  ui ,... i,i,+t) (3.1) 
i . + > = l  

Z - 1  

- U .  . . ) (3.2) ~ i ~ . . , i ~  -  h hi, ,., i , i  ,+,, ~ i ,  ... i , i ~ + , , ~ i ,  ... i , i , + ~ ,  z l . . . z , x , + l  
i . + L = l  

where ( i l  . . . i 7 i r + l )  denotes the i,,, th neighbour of the lattice site ( i l  . . . i,) as 
one walks towards the surface of the Cayley tree, i ,  ranges from 1 to z ,  and all other 
2,’s range from 1 to ( z - 1 ) .  H (  h ,  I ,  J ,  U )  and L( h ,  I ,  J ,  U )  are given by (2.10) and 
(2.11). h i , , , , i ,  ( I i l , , , i , )  denotes the effective field (potential) acting from lattice site 
( i l  . , . i?) onto lattice site (i, . . . i v - l ) ,  In particular, hit  ( l i , )  are the z effective 
fields (potentials) acting on the central site So. J i  ,... i , + I  ( U i l  ...,, + I  ) denotes the 
magnetic (potential) interaction between lattice sites ( i l  . . . i,i,+,) and ( i l  . . . i?). 

From the above recursion relations for the effective fields and potentials we 
can determine a recursion relation for the distribution function for these fields and 
potentials as we go from the outermost to the innermost shell, given by 
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1 - 1  

x n 9i ~.. .  i ~ + , ( h i  ~ , . ,  i ~ + , , ' i  ~ . . . i - + * ) ~ ( J ; ~ . . . i ~ + ~ , u i  ,._. i r + , )  
i,+l=l 

(3.3) .. J L  I ,  J I I  1 7 1  

x U"; l . . . i , + ,  ali l . . . i , + ,  aJ<! . . . i r+ ,  a"; l . . . i . + * '  

This is the most general form of the distribution functions. 

of the Caykey tree were equally distributed, we would have 
For homogeneous boundary conditions, i.e. if all fields and potentials at the Ups 

gi,...i,('?') = gr(h31). (3.4) 

For independently distributed fields h and potentials 1 at the boundaly of the Cayley 
tree we would further get 

9 , ( h ? l )  = g 7 ( h ) 9 J 1 ) .  (3.5) 
In order to be complete, the iteration schemes (3.1)<3.3) obviously still require 

certain starting conditions which hsve to be specified at the surface of the Cayley 
tree. 

3.1. Definirion of local thermodynamic quantities for a system on a Cayley wee 

Definition A. Thermodynamic quantities (per lattice site) which depend on single-site 
expectation values alone like the magnetization or the order parameters (2.21)-(2.24) 
are evaluated at the central site So of the Cayley tree. The effective fields and 
potentials acting on So tire hereby taken as being distributed with a tixed point 
solution of the iteration scheme (3.3) for the distribution functions. This represents a 
formalisation cif the intuition 'deep inside an infinite Cayley tree', and is then called 
a local thermodynamic quantity (per lattice site). 

Definition E. Thermodynamic quantities (per lattice site) which depend on pair-sire 
expectation d u e s  like the internal energy, the entropy, etc. can be derived from the 
free energy by differentiation. Thus, we only have to define a local free energy per 
lattice site, @lool. For consistency, we require that the just defined local magnetization 
mloul is recovered upon differentiation with respect to B ,  and that in the limiting case 
of P ( J ,  U )  being a Bdistrihution we recover the non-random Bethe approximation. 
Thus, we define by 
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where E, k the energy per lattice site in zero magnetic field of a corresponding 
regular lattice of coordination number z when all spins are +1. The interactions 
are hereby taken as the average magnetic and potential interactions, J,  ( J , j )  and 

We want to make two comments about this definition. Erst, equations (3.6) 

T Taucher and N E  Frankel 

U, E ( U i j ) .  

and(3.7) are equivalent to Thompson's integral definition of +,m, [7] 

Second, the Bethe approximation for the non-random king model on a Cayley tree 
is only recovered if Eo = J z  f 2, which corresponds to our definition above, and not 
if Eo = J ,  as would be the case if our lattice for evaluating E, were the Cayley tree 
rather than the corresponding regular lattice of equal coordination number. 

It is well known that the iteration scheme (3.3) has, in general, several fixed point 
solutions [13]. They correspond to different boundary conditions on the Bethe lattice 
which represent the initial d u e s  for the iteration. Thus, the local thermodynamic 
quantities defined in A and B will dearly depend on the specific boundary conditions 
on the Cayley tree. 

3.2. Equivalence to the corresponding hemodynamic quantities in [he pair approxima- 
tion 

Proof A. We. filst prove that single-site expectation values in the pair approxima- 
tion and the corresponding local thermodynamic quantities on the Cayley tree are 
identical. 

Assume that the boundary fields and potentials on the surface of the Cayley tree 
are randomly distributed according to a solution of the following integral equation 

x ~ g ' * - ' ) ( h i , l , ) P ( J i , C i i ) d h i d l i d J , d U i  (3.9) 
i = l  

which constitutes the distribution function for the ( z  - 1)-bond effective fields and 
potentials in the pair approximation, equation (2.15). 

Inserting (3.9) into the recursion relation (3.3) now gives the result that any 
( I  - 1)-bond distribution function for the pair approximation represents exactly a 
fixed point solution of equation (3.3), and vice versa. 

According to our definition of a local thermodynamic quantity above, and taking 
into account equation (2.14) of the pair approximation for the DMLG, this means that 

are identical, for arbitrary z ,  i.e. in particular the order parameters 
!OM! sing!e-site expec!a_!inn va!ues nn !he Cay!ey tree and in the pair approximation 

= ((sO))R 4 = ((sO)2)R P = ( ( s i ) ) R  = (3.10) 
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Proof B. It now remains to be shown that the free energies coincide as Well. 
The free energy per site for the DMLG in pair approximation is obtained from 

(2.18), (2.19) and (2.20) as 

* = 'p, + z (;VI2 - 9 1 ) .  (3.11) 

This can easily be seen when considering the limit T -.+ 0. In order to show that 
(3.11) mnstitutes also the local free e n e r 5  on a Cayley tree we have to prove that it 
satisfies (3.6) and (3.7). This is done in the appendix. 

4, A modified pair approximation 

As described in the introduction, in their attempts to find a mean field theory for 
random spin systems which incorporates SRO both the pair-approximation club and 
authors who treated random systems on the Cayley tree derived a set of coupled in- 
tegral equations for the distribution function of the effective fields which do not seem 
to be readily amenable to further analytical investigations. Although a very limited 
number of analytical results exist, like Katsura's solution of the integral equation for 
the & J  mode! at T = 0 !19! and  me systematic l / z  expansions !20!; the majority 
of authors then simply continue their studies by either considering the limiting case 
of the infinite-range-interaction model ( z  -+ CO), or by performing some numerical 
studies, or by discussing general properties of the system like the nature of the phase 
transitions. 

Having shown that the method of the pair approximation is equiwlent to a system 
on a Cayley tree when considering its local thermodynamic properties, we now present 
an alternative mean field theory which is based upon the pair approximation, and thus 
incorporates some kind of SRO, but which can be solved exactly for finite coordination 
number z. 

4.1. General formulation 

The self-consistent approach of the pair approximation invariably leads to an in- 
tractable set of coupled integral equations for the distribution function of the effective 
fields. We, therefore, abandon the self-consistent approach now and suggest a mean 
field theory which treats the Kikuchi spin cluster of the pair approximation exactly 
but embeds it in zeroth-order effective fields and potentials from the infinite-range 
model. We let these zeroth-order fields and potentials dictate the general shape of the 
distribution function and then determine its specifying parameters self-consistently. 
The method will be formulated for a general random bond distribution P( J ,  U) and 
will then be examined for the special case of P( J ,  U )  being Gaussian. 

Let g( - ) (h , l )  be the w-bond distribution function of the infinite-range model in 
pair approximation (see IFT (151. g(- ) (h ,  1 )  constitutes the distribution function of 
the effective fields and potentials for a single-site expectation value. Hence, g(m)( h,  1 )  
corresponds to the z-bond distribution function g( ' ) (h , l )  of a system with finite 

for finite z in zeroth-order effective fields and potentials is then tantamount to making 
the following assumption 

GGidiaai;oa iiiim:ii z ,  Embeddiag ;he ZkdChi cli;s;e; of ;he psi; spp;oximaciGii 
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By defining the Fourier transforms 
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G , (p ,  s) E /ei(phtal)g(r)(h,l) d h  d l  (4.2) 

and by using the theory of Fourier transforms, equations (2.12) and (213) yield 

G , - , ( p , s )  = [ ~ z ( ~ , ~ ) l ( z - l ) ' z .  (4.3) 
From (4.1) and (4.2) we get 

G , ( p , s )  = Jei(pAtri)gm(h, I )  dh dl. (4.4) 

Inserting (4.3) and (4.4) into equation (2.16) for the (2- 1)-bond distribution function 
finally gives 

(4.5) g ( z - q h , l )  = - J [ G , ( p , s ) l  (2-11/z  e - i ( p h t s l )  dpds,  
(2Tl2  

Equations (4.5) and (4.4) are the general equations for determining the ( z  - 1)-bond 
distribution function g(z-l)(h, 1 )  for our modified pair approximation. 

p ( - )  and A(-) 
from zeroth-order mean field theory. The actual order parameters for our model, 
so far, would be determined by inserting (4.5) and (4.3) into the defining order 
parameter equations (2.21)-(2.24) and would implicitly depend on dm), p(-)  
and A("') via exactly these equations. 

However, we now make our approach 'semi-self-consistent'. We replace m(-), 
in the just mentioned equations by 'the order parameters m, q,  

p and X which we want to determine and then determine them self-consistently from 
these equations. Following this procedure, we thus obtain 

g ( " ) ( h , / )  will still depend on the order parameters dm), 

p(-) and 

m =  (4.6) 

with $z- ' l  resulting from g(2-1) if , m ' the determining equations (4.5) and (4.4), we 
replace m(m), 

The order parameters m, q, p, and X for our model are then determined self- 
consistently from equations (4.6)-(4.9). Once they are determined, they are inserted 
into g(-), hereby replacing m("'), and thus yielding a modified 
fgnctinn ~ ( ~ l ( h , ! ) .  gsifig ch& modified &ribVtign $- ) (h ,  l ) ,  we th.es evnliritlv --r---.J 

determine the modified (2-1)-bond distribution function $'- ' ) (h ,  1 )  from (4.5) and 
(4.4). 

All thermodynamic variables are then readily evaluated from the pair approxima- 
tion equations (2.18)-(2.24) by using this modified ( 2 -  1)-bond distribution function. 

p(-) and A(-) in g ( " ) ( h , l )  by m, q, p and A, respectively. 

p(m) and 
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4.2. Gaussian mndom bond distributions 

We now examine the DMLG in our modified pair approximation for the special case 
of Gaussian random bonds. 

For this purpose, we assume that the general probability distribution P( J ,  U) is 
given by a product of two Gaussian forms, P(  J ,  U) = P( J )  . Q( U), with 

and 

(4.10) 

(4.11) 

where Jo (U,) denotes the average magnetic (potential) interaction ana A J  (Aiij  
is the width of the distribution for the magnetic (potential) interaction. 

The case of infinitely-long-ranged interactions, or zeroth-order mean field theory, 
is derived from the pair approximation in the limit z - 00. For this purpose, however, 
the average interactions and widths of the above distributions have to be rescaled in 
order to yield finite thermodynamics per lattice site. We thus define 

A 0  
0 - z - m  2 I - -  J; A U =  lim - 4 U - lim - 

(4.12) 

with j , ,  A j ,  eo and A D  being constants, and with litnz-m being understood as the 
proper scaling as z - M rather than the actual limit (which would be equal to 0). 

Using these definitions and assumptions for Gaussian random bonds, In 11.51 have 
investigated the zeroth-order mean field limit z - M and obtained the following M- 

bond distribution function for the effective fields and potentials 

g ( m ) ( h , l )  = g t ) ( h ) .  gi"(!) (4.13) 

with 
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Following the general procedure for our modified pair approximation, we first 
define the z-bond distribution function as 

g‘”’ (h , l )  = g ( - ) ( h , l )  (4.20) 

with the appropriate scaling 

.io = z ~ o  

~.i = J ~ A J  

.Go = r ~ ,  

~ i i  = &AU. 

Inserting g(-)( h ,  1), i.e. equations (4.13)-(4,19), into (4.4), gives 

(4.21) 

( p 2 ( A h ) 2  s2(A1)2 exp(- ihop- i los )  (4.22) G,(P,~) = exp - 2 --> 2 

and by using this result in the determining equation for the ( z  - l)-bond distribution 
function, equation (4.9, we get 

with 

(4.24) 
z -  1 1’ - __ 
Z 0 -  

h‘, Ah’, 1; and Al’ still depend on the order parameters m(m), q(-) ,  p(m) and 
AVm) from the zeroth-order mean field approximation. Following the procedure for 
our modified pair approximation, we now replace m(-), q(-),  p(- )  and by m, 
q, p, and X of our model and then determine them self-consistently from equations 
(4.6)-(4.9). 

p(- )  and A(-) in (4.16)-(4.19) by m, q, p, and A, re- 
spectively, and inserting this into equation (4.23) for the ( z  - 1)-bond distribution 
function gives the modified ( z  - 1)-bond distribution function $ - l )  as 

Replacing mCm), 

( h  - 1 
exp (- ) -- exp (- (‘ - lo)’) (4.25) 

1 p ’ ) ( h , l )  = 
&Ah ~ ( A / L ) ~  J‘i;;Al 2(Af)2 
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The order parameters m, q, p and X are hereby determined self-consistently from 
the set of integral equations (4.6)-(4.9), with ij('-')(h,L) being given by (4.25). 

The free energy and other thermodynamic quantities are finally obtained by using 
this O('-')(h,L) as the ( z  - 1)-bond distribution function in equations (2.18)-(2.24) 
of the finite z pair approximation. 

Equations (4.25)-(4.29) together with equations (4.6)-(4.9) represent our modified 
pair approximation for the case of Gaussian random bonds. If we now compare them 
with equations (4.13)-(4.19) and (2.21)-(224) of the pair approximation in the limit 
z + CO, the zeroth-order mean field limit, we discover that both sets of equations 
can be mapped into each other by a simple transformation. More specifically, our 
modified pair approximation for the DMLG with Gaussian random bonds corresponds 
exactly to treating the DMLG in the zeroth-order mean field approximation but with a 
different random bond distribution P'( J ,  U) of smaller widths and means, given by 

(4.30) 

The modified pair approximation has been an exactly solvable attempt to include 
SRO into a mean field theory for the DMLG. At least for the case of Gaussian random 
bonds, equation (4.30) suggests that this inclusion of SRO thus simply amounts to 
a reduction in the randomness and strength of the interactions in the infinite-range 
model of zeroth-order mean field theory. 

a- ywLLyLIJ aie a specia! case of the EMLC h ze:o:h-o;dei m a n  Be!d 
approximation [U]. A numerical plot of the entropy from the SK solution shows that 
the entropy increases as randomness, i.e. A .f, decreases [lo]. But this is exactly what 
the inclusion of SRO via our modified pair approximation generates. Since numerical 
studies of the entropy on a Bethe lattice [lo] seem to suggest a positive entropy below 
the spin glass transition temperature, our modified pair approximation pushes mean ~ 

field theory in the right direction. However, as can be seen from equation (4.30), 
it still only represents a very marginal improvement indeed upon zeroth-order mean 
field theory, and certainly cannot resolve the negative entropy problem. 

I%- C Y  Pn..nt:n*r 

5. Summary and discussion 

The disordered magnetic lattice gas (DMLG) as a unifying description of many simpler 
random spin models for amorphous solids and real fluids has been investigated in an 
attempt to devise a mean field theory which goes beyond the infinitely-long-ranged 
model by incorporating short-range order (SRO). 

The usual procedure for incorporating SRO into a mean field theory for spin 
systems consists in treating them on a Cayley tree of finite coordination number z .  
In order to avoid peculiar Muller-Hartmann-Zittartz type solutions [21], and in order 
to recover the Bethe-Peierls-Weiss approximation in the non-random case and the 
infinite-range model in the limit z - CO, Thompson [ 6 , 7  suggested that the proper 
procedure for treating a system on a Cayley tree is to consider its local thermodynamic 
properties rather than the corresponding global or bulk expressions. 
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The pair approximation together with the method of the distribution function 
represents an alternative approach to developing a mean field theory with SRO. This 
approach has been pursued by a series of different authors, see [14,15,17] and refer- 
ences therein. 

We have shown rigorously in this paper that considering the local thermodynamic 
properties of the DMLG on a Cayley tree is equivalent to studying the DMLG in the 
pair approximation by the method of the distribution function, for arbitrary coordi- 
nation number t. 'RI this purpose we had to provide a precise definition of local 
thermodynamic quantities of a system on a Cayley tree. In contrast to Thompson, 
who determines local order parameters as the fixed p i n t s  of an emerging iteration 
scheme for the order parameters, we consider the fixed-point solution of an iteration 
scheme for the distribution functions of the effective fields and potentials. The defi- 
nition of local thermodynamic quantities is independent of boundary conditions. We 
W"." YI.".. U,-, m.. L V U I L  LLL'LLL'"UJ"'.L'LLC y"P""LLua .U. U%- "L",L.u Y,, P Larwy U%,+ 

coincide with those obtained by Inawashiro, Frankel and Thompson (IFT) [14] for the 
DMLG in the pair approximation, for arbitrary z.  

Having established the equivalence of Cayley tree and pair approximation, we then 
presented a modified pair approximation as an exactly solvable attempt to incorporate 
SRO into a mean field theory for the DMLG. In this modified pair approximation the 
Kikuchi pair cluster is not embedded in self-consistent effective fields and potentials 
as in the pair approximation. Instead, the general shape of the distribution function 
for these fields and potentials is determined by the infinite-range model of zeroth- 
order mean field theory, while the specifying parameters of the distribution arc then 
determined self-consistently. 

After having formulated the method for general random bond distributions 
P( J, U), we examined the particular case of P( J ,  U )  being a Gaussian form. The 
resulting solution turns out to correspond exactly to an infinite-range model of the 
DMLG with a different Gaussian random bond distribution of smaller widths and 
means. Thus, the randomness and strength of the interactions in an infinite-range 
model of zeroth-order mean field theory arc being reduced by the inclusion of SRO 
.via our modified pair approximation. Although this appears to be physically reason- 
able in that it leads to an increase in the low temperature entropy, the modified pair 
approximation, a t  least in the case of Gaussian random bonds, turns out to constitute 
only a small improvement upon the infinite-range model, and clearly cannot solve the 
negative entropy problem. 

Despite the rather modest outcome of our modified pair approximation, the tech- 
niques employed would lend themselves readily to the formulation of a 'zeroth-order 
theory' for correlation functions in random spin-1 systems, which, to the best of our 
,U,uw,rugr;, >U,, C V l l D L L L Y L C U  r r , a n * w y  "L'g," bl"""". lllr ,"La "LII..I" "I10 Y L V  -,.- 
sider pair correlations on a Cayley tree by embedding a string-shaped spin cluster in 
zeroth-order effective fields and potentials. We expect that a richness Of structure 
should arise in this case from the interplay between the phase criticality provided 
by the effective fields and potentials of the infinite-range model and the complexity 
of the one-dimensional random field king model which manifests itself already for 
the spin-; model at T = 0 [22]. Such an investigation is intended for a future 
publication. 

m..lrI ehr\..i rh-t 011 lnrsl  + h m r m n A s m q m : r  n..onrit:n~ fmr +hn n x a r  c -- g PorJn.,  nna 
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Appendix 

In this appendix we are going to show that the free energy (3.11) satisfies equations 
(3.6) and (3.7) and thus constitutes the local free energy on a Cayley tree. 

From (2.20), (2.2) and (2.12) we get 

where we have used our definition of mloul and proof A from section 3.2 in the last 
equality. 

Fioa (2.19), (2.3j and (2.i2j we gei 

By using (2.14). our definition of mloeal and noting proof A from section 3.2, we can 
..wi+a ,hi" no 
. B . L L I  Y," 'so 

1 
- __ a Lp12 = T ( ( ( s l ) l ) R  -k ((s2)2)R) = ((sl)I)R = m l o u l .  (A3) aB 2 

Inserting (A.l) and (A.3) into (3.11) finally gives 

This proves the first equality in the definition of the local free energy. We now 
have to show that + satisfies (3.7) as well. 

From (2.20), (2.12) and (2.13) we have 

B k n g  the limit B - 03 then yields 

B-m lim [qI( B) + B] = - p  - / ( l  + h)g(')( h ,  1 j d h  d l .  ( W  
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From (2.19), (2.12) and (2.13) we further have 

x ' P ( J , U ) d J d U d h l d l , d h z d l z  + B  . 1 ('4.7) 

Inserting (2.8) and (2.6) gives 

1 + 2 e x p [ @ ( p + 1 1 ) ] c o s h p ( B + h l )  

+ 2exp[P(11+ id] coshLVB + A,) 

+ 4 exp [@(214 + 1 ,  + 1, + U ) ]  

x ( c o s h p J c o s h @ ( B +  h l ) c o s h @ ( B +  h,) 

+ s i n h p J s i n h D ( B +  h l ) s i n h p ( B +  h,)))  

x P ( J ,  U)dJdUg(*-')(h,,l,)g(*-')(h,,l,)dh, dl ,  dhzdl ,  + B 1 
1 

In ( ~ X P [ P ( ~ / L  + 1 ,  + 1 ,  + U + J + h ,  + h , ) ] )  - - - J  - 
213 

x g("-l)  ( h l ,  L1)g('-')(h2, 1 2 )  P( J ,  U )  d J  d U  dh, dl ,  dh, dl, (A.8) 

which upon integration becomes 

From the Hamiltonian (2.1) and our definition of E, following equation (3.7) we 
further have 

(-4.10) 
z z E - - J  - - U , - - p .  

2 0 -  o 2  

Inserting (A.6), (A.9) and (A.lO) into equation (3.11) for the free energy in the pair 
approximation $, finally gives 

Jim (d + B )  = Ec (A 11) 
B-m 
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where we have used equations (2.12) and (2.13) to establish that ( z  - 1 ) ( 1 ( * ) )  = 
Z ( ~ I ~ - ~ ) )  and (z - l)(h(')) = ~ ( h ( ~ - ' ) ) .  

Combining equations (A4) and ( A l l )  completes the proof that the free energy 
for the DMLG in the pair approximation is identical to the local free energy of the 
DMLG on a Cayley tree, for arbitraly coordination number z. 
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